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J. Phys. A: Math. Gen. 19 (1986) 1083-1092. Printed in Great Britain 

Hilbert spaces of analytic functions and representations of the 
positive discrete series of Sp(6, R)? 

P Kramer and Z PapadopolosS 
Institut fur Theoretische Physik, Universitat Tubingen, 7400 Tubingen, West Germany 

Received 29 March 1985, in final form 19 August 1985 

Abstract. Hilbert spaces of analytic functions are constructed which carry irreducible 
representations of the positive discrete series of Sp(6, RI. 

1. Introduction 

Segal (1960) and Bargmann (1961) constructed a Hilbert space of analytic functions 
for the representations of the Weyl group associated with the oscillator creation and 
annihilation operators. This construction is closely related to the coherent states of 
the oscillator. In the present paper we generalise the approach taken by Bargmann to 
obtain a representation space for the symplectic group Sp(6, R) (or Sp(3, R) in mathe- 
matical notation) rather than the Weyl group. 

Perelomov (1972) gave a general description of coherent states and constructed 
them in particular for representations of Sp(2, R) (or Sp( 1,R) in mathematical nota- 
tion). These coherent states have been applied to the theory of collective motion in 
nuclei (see, for example, Broeckhove et al 1984). 

In Perelomov’s construction, the coherent states are obtained by acting with unitary 
operators depending on group parameters on a normalised state of external weight in 
the representation space. Kramer and Saracen0 (1981) studied coherent states obtained 
by acting with non-unitary operators depending analytically on complex parameters 
on the same states. For particular representations of Sp(6, R),  these analytic coherent 
states were constructed by Kramer (1982). The corresponding reproducing kernel and 
measure were already given by Hua (1963). The unitary coherent states with real 
parameters have also been constructed and applied to collective theories of nuclear 
closed shell configurations (see Kramer er a1 1985a, b). Certain results on coherent 
states for representations of Sp(6, W) corresponding to open shell dynamics were 
obtained by Filippov et a1 (1984) and Rowe (1984). Deenen and Quesne (1984) 
constructed for the same purpose so-called partial coherent states. In the present paper 
we construct analytic coherent states for general representations of Sp(6, W) from the 
positive discrete series, and give the general method and explicit results for the 
corresponding reproducing kernels and measures. The results of the paper could be 
applied to collective theory for nuclear open shell configurations and to boson mappings 
for corresponding models (see Castafios et al 1985). After completion of this work 
we learned that Quesne has obtained very similar results. 

t Work supported by Deutsche Forschungsgemeinschaft. 
$ Permanent address: Institute of Physics, Belgrade, Yugoslavia. 
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2. Hilbert spaces of analytic functions 

Consider @‘ with points z = ( z , ,  z2, . . . , z,) and functions f :  C‘+ C analytic in all 
complex variables z,, j = 1,2 , .  . . , r. For the Hilbert space 2 we require 
Condition ( X l ) .  X has a scalar product ( I )  and a measure p, E =  T 2 ( p )  with 

P Kramer and Z Papadopolos 

d k ( z )  = p ( z ,  2) n dRe(zj) dIm(z j ) .  
j 

Condition (22).  2 has a reproducing kernel 1(z ,  z‘)  with the property 

f ~ % : f ( z ) =  I ( z ,  z ’ ) f ( z ’ )  d p ( z ’ ) .  I 
We require that % carries a representation of a Lie group G with 
properties: 
Condition (Gl). % admits a Lie transformation group G, 

the following 

such that under G 

Condition (GZ). G acts on elements of E as 

Condition (G3). The representation of G is unitary. 
To elaborate the conditions imposed on the Hilbert space by the conditions ( G l ,  G2, 
G3) we consider the generators of G. 

Dejnition 2.1. The generators X,, i = 1 , 2 , .  . . , s of G in E are the operators defined by 

(a/%)( q f ) ( z ) I m = o  = ( X I f ) ( Z )  

For the generators X ,  we introduce the following notation: 

i = , l , 2 , .  ..,S. 

X , ( Z )  = c J,(z)(dldz , )+c,(z)  

For later use we define a second set of similar operators 

i = 1 , 2  , . . . ,  S. 
J = 1  

? 

X ( Z )  = c f; ,(z)(elaz,)  - C I ( Z )  + a , ( z )  

a , ( z )  = c (alaz,lJ;,(z) .  

1 - 1  

r 

, = I  

The unitarity (G3) of the representation can now be expressed in terms of pairs X l ( z ) ,  
( X + ) l ( z )  which must be adjoint with respect to each other. 
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Proposition 2.2. Unitarity of the representation with respect to the reproducing kernel 
requires that the generators fulfil the differential equations 

X,(z)I(z,  z’) = (X+),(Z’)I(Z’, z )  i = 1 , 2  , . . . ,  s. 

Proof We write the scalar product in the form 

and apply the conditions 

((X+),f  I 4 )  = (f l Xzq) i =  1,2, .  . . ,  s. 

Proposition 2.3. Unitarity of the representation with respect to the measure p requires 
that the weight function p for the measure fulfils the differential equations 

% M z ,  f’ ) l , ,=z  = ( ~ + ) , ( Z % J ( Z ,  f ’ h  = z  i = 1 , 2  ,..., s. 

Proof We use the explicit form of the generators X,(z) given after definition 2.1, use 
the analytic property of the elements of X and perform a partial integration similar 
to the one considered by Bargmann (1961). For the functionsJ; 4 under consideration, 
we have to require that expressions 

f;, ( z) 4 ( z ) f o p  (z, a i , j=1 ,2  ,..., r 
vanish at the boundary of the domain for the complex variables z. For the special 
cases in propositions 5.2 and 6.3 the boundary is defined as lkvl + 0, i, j = 1,2,3 and 
(I - BtB) + 0. The remaining conditions can be expressed in terms of the differential 
operators zz and yield the conditions stated above. 

3. The complex form of Sp(6, R) and analytic parameters for the cosets 
( W )  x U(2))\SP(6, w, ( W )  x U(1) x U(1))\SP(6, w and U(3)\SP(6, R) 

As in Kramer (1982) we use the complex form of Sp(6, R) given by 

I -iI R Sp(6, R)R-’ = Sp(6, C )  n U(3,3) 

For g E Sp(6, R) in complex form we define 

and 

Then g is characterised by the two conditions 
g* = g-‘ g’ = g-1. 

We shall use the complex decomposition 

A = ‘A, B = ‘B. 

Now we state propositions on the analytic parametrisation of cosets which were 
examined by Kramer and Saracen0 (1981) and Kramer (1982). 
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1 kl2 k13 
k = O  1 0 

0 0  1 
k 1 2 ,  k I 3  complex 

and has the real dimension 9 - 5 = 4 (compare Kramer 1981, pp 63-70). 

Proposition 3.2. The coset U(3)\Sp(6, R) admits the analytic parametrisation by the 
representatives 

or equivalently I - B f B  > 0 (compare Kramer 1982). 

Proposition 3.3. The coset (U(1) x U(2))\Sp(6, R) or (U( 
admits the analytic parametrisation by the representatives 

‘k - ’  0 I - B  
0 k l  10 I /  

with k as given in proposition 3.1 or 6.1 and B as given in proposition 3.2. The 
dimension of this coset is 21 - 5 = 16 or 18 corresponding to 8 or 9 complex parameters. 
The proof is given in the appendix. 

We now examine the action of the group Sp(6,R) on the coset parametrised 
according to proposition 3.3. The 8 complex parameters k, B play the role of the 
complex numbers z considered in § 2, and the action to be considered determines the 
action of the transformation group Sp(6, R) according to ((31). 

Proposition 3.4. The action of Sp(6, R) on the coset representative c from proposition 
3.3. The map 

9: k ‘ =  9 i ( k ,  B, i )  
B’= 42(k B, i )  

has the following properties. For C#J~ assume 

k + k i  = h’k’ .  

Then k’ and h’ are characterised by the equations 

k ‘ :  k i j  = [ ( k ~ ) , , ] - ’ ( k ~ ) , ,  j = l , 2  

h’: h i ,  = ( k i ) , ,  

det( h‘)  = det( k i )  = det i .  

In table 1 we give the maps &, 42 for the three factors of general group element g. 
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Table 1. The action of Sp(6, W) with elements g on the analytic parameters k, B 

I: -:I k ' =  k 

0 r i - 1  

h ' k ' =  kX 
I o  il 

h ' k ' =  k ( 1 -  A B ) - '  

B , - B + L ~  

4. The action of Sp(6, R) on analytic functions 

We now consider the positive discrete series representations of Sp(6, R). These rep- 
resentations are characterised by an extremal weight and  a corresponding extremal 
state. We shall consider the case where two weight components are equal 

W = { W I H ' 2 U ' Z }  w ,  = h l  + ( n / 2 )  w 2 = h 2 + ( n / 2 )  

and the extremal state 

Iextr) = I(w, w 2 w 7 ) ) .  

The case w1 = w 2  has been considered in Kramer (1982)  and so we assume w1 > w 2  in 
what follows. 

As in Kramer (1982)  we shall assume that lextr) is of highest weight with respect 
to U(3). Consider now an element of GL(3, C) which is a product of a lower triangular 
matrix and  a diagonal matrix and which we denote by h'. For the representation we 
then obtain 

Dejnitibn 4.1. Letfbe  a n  element of the representation space of Sp(6, R) characterised 
by the weight w,wZw2. We define a map from f to an  element of a Hilbert space of 
analytic functions by the prescription 

f - . f ( k ,  B )  = (extrl T ( c ) l f )  
with c given in proposition 3.3. Similarly we define the action of Sp(6 ,R)  on these 
functions by 

( T g f ) ( k  B)=(extrIT(cg')If)= v f ( 4 i ( k ,  E, g) ,  42(k ,  B, g')) 
v = (hil)hl-h2(det h')'",. 

Since w2 = h 2 +  n / 2  can take half-integer values, we should give a prescription for the 
value of (det in this expression. We shall make use of Bargmann's prescription 
(Bargmann 1968) for half-integer powers of this determinant. This prescription arises 
from the consideration of the universal covering group of the real symplectic group. 

With this definition we are now ready to construct the generators according to 
definition 2.1. We give the defining relations for these generators in table 2.  
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Table 2. Definition of the generators of Sp(6, W) for elements according to table 1. 

Proposition 4.2. The generators of Sp(6, R) with respect to analytic functions of ( k ,  B )  
have the explicit form 

The symmetrised derivatives have been introduced since we wish to apply these 
operators to functions of the matrix B irrespective of the order of the matrix indices. 

5. The reproducing kernel and the measure 

Having found the expressions for the generators, the reproducing kernel and the 
measure should be found as the solutions of the differential equations given in 
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propositions 2.2 and 2.3.  Fortunately it is possible to derive the form of the reproducing 
kernel from the group multiplication law. For this purpose we define the element 

where the other blocks are not needed. Then we get from definition 4.1 the expression 

{ k, B1 k’ ,  B’) = {extrl T(  c( k, B ) )  T( cg( k’ ,  B‘))]extr) 

= ( A  i ) h i - h 2 (  A iii) w2 

where the A are subdeterminants of the matrix ‘A-’. From the explicit expressions for 
c and c’ we derive 

A: = ( k V k ’ + ) , ,  

A;;: = det V 

v=(r -B‘+B) - ’ .  

Proposition 5.1. The expression (k ,  B ( k ’ ,  B’) given above fulfils with respect to the 
generators the differential equations of proposition 2.2 for the reproducing kernel I 
with the adjoint relations 

( K , - ) +  = Ky,i 

(Cy)+ = c/, 
and therefore provides the reproducing kernel for a Hilbert space X of analytic 
functions. 

Proof: Denote an abstract generator of the group in the representation space by rZl. 
Then by use of proposition 2.2 we have 

x, ( z ) ( z l  z’) = ( Z I J Z ,  I z ‘ ) .  

Using this equation and its adjoint it is easy to show that the overlap indeed fulfils 
the differential equation required in proposition 2.2 for the reproducing kernel. 

We turn now to the measure and according to the proposition have to construct 
the differential operators *n. An explicit computation, taking into account the sym- 
metrised derivatives, yields the following expressions: 
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k =  

Proposition 5.2. Consider the generators of Sp(6, R )  in the form 

x, = X ( k ,  B, h , -  hz, W J .  

Then the differential operators zt may be expressed as 

zz ( k, B, h ,  - h2, w2) = X I  (k, B, - h ,  + h2 + 3, - w2 + 5). 

Therefore the differential equations for the measure given in proposition 2.3 are solved 
by the expression 

p ( k ,  B, E‘, B’) = C ~ ( A : ) - ~ , + ~ ~ ” ( A ~ : ~ ) - ~ ~ + ~  

and the weight function for the measure is given by 

p = p ( k ,  B, k; B ) .  

k12 k13 

0 1 k 2 3  k12,  k13, k23 

0 0  1 

6. Representations and Hilbert space for a general weight 

The analysis follows the same pattern as before, and we give only the key results. 

Proposition 6.2. The generators of Sp(6, R) with respect to the complex variables ( k ,  B )  
have the same general form as given in proposition 4.2 but now with C, , (k)  given by 

C z ~ ( k )  = D y ( k ) + ( h l -  h 2 ) F t ( k ) + ( h 2 - h 3 ) F Z , ( k ) +  w36g 

where 

1 0 0  
F ’ ( k )  = kI2 0 0 

k13 0 0 

and ( k ,  x k2) ,  = k l 3  - k 1 2 k 2 3 .  
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Proposition 6.3. The reproducing kernel for a general weight is given by 

(kB1 k’B’)  = ( A  i)hl-h2(A ;;) h 2 - h 3 (  Ai::) w’3 

where the subdeterminants are taken from the matrix 

k (  I - (B‘)*B)-’(  k’)’ 

The measure is given by 

p(  kB, k’B’)  = (A:)h, -h, -2(A~:)h, -h2-2(A ;:i)-’”3+6 

at the value k’ = k, B’ = B. 

Appendix. Proof of proposition 3.3 

We give here the proof for the case where wl Z w2 # w3 # wl. We have to show that 
the coset (U( 1) x U( 1) x U( 1))\Sp(6, W) can be parametrised by the complex numbers 
B and k. We first consider the complex extension Sp(6, C) of the symplectic group. 
According to the relations given after definition 2.1 the real symplectic group is obtained 
by the restriction to U(3,3). The group Sp(6, C) admits the block decomposition 

where A and B are complex symmetric matrices and A E GL(3, C). By the well known 
Gauss decomposition, A or ‘A-’ admits the factorisation 

‘A-‘ = A-Aok (‘42) 

where A- is a lower triangular matrix, A. is a diagonal matrix and k is an upper 
triangular matrix. We use this factorisation to pass from the decomposition of g 
(equation (Al) )  to 

where the lower triangle matrix A!. is defined as 

AY := A,’A-Ao (A41 

A’:= (A-Ao)- ’Af(A-Ao)- ’ .  (-45) 

and the symmetric complex matrix A’ as 

The diagonal matrix A. has a unique decomposition A o =  hbo into a real positive 
diagonal matrix bo times an element h of the group U( 1) x U( 1) x U( 1). By dropping 
the element h and defining 

1 = AoAY (A61 
we obtain a unique characterisation of the representative g, for the coset(U( 1) x U( 1) x 
U( l))\Sp(6, C) of the form 
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To pass from equation (A7) to a coset representative for (U( 1) x U ( l )  x U(l))\Sp(6, R), 
we now restrict g, to the group U(3,3)  which implies 

gcgl= gkc = I (A81 

where 

In terms of the matrix blocks B, k, 1 and A', these conditions are equivalent to the 
two equations 

1 + 1 =  ( k + ) - I ( l -  B+B)k- '  (AlO) 
A' = -( l+ / ) - ' (  k-')+B' 'k. (A1 1) 

Now we consider the parameters B, k as independent complex parameters subject 
only to the restrictions on their forms and for B to ' B  = B, I - B + B  > 0. It can easily 
be verified by an explicit computation that the set of equations (A10) has a unique 
non-analytic solution 1 = l ( k ,  B )  which, when inserted into equation ( A l l ) ,  yields a 
corresponding solution for A'= A'(k, B ) .  The matrix gc of equation (A7) restricted in 
this fashion yields now the coset representatives of (U( 1) x U( 1) x U( 1))\Sp(6, R). We 
stress that the construction of analytic coherent states in definition 4.1 requires that 
we do not use the non-analytic first two factors of gc. 
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